Today's post is in Norwegian - I'll be back in English later
Vi sitter med stadig voksende mengder med data om spammere. Kan vi bruke dette på en måte som er nyttig for andre?
Vi som selv står for driften av eposttjenester vet av tidvis smertelig erfaring hva som skal til for at minimalt med uønsket reklame og lureri som kan være direkte trusler mot sikkerheten faktisk havner i innboksene til brukerne våre.
Epost: Dette burde vært enkelt
I utgangspunktet burde det være en enkel sak å håndtere epost: Serveren er satt opp slik at den vet hvilke domener den skal ta imot post for, og hvilke brukere som eksisterer i domenene. Når en maskin tar kontakt og signaliserer at den ønsker å levere epost, sjekker serveren om meldingen er adressert til en gyldig bruker. Er det snakk om en gyldig bruker, blir meldingen mottatt og lagt i innboksen til den aktuelle brukeren, i motsatt fall får den som er oppgitt som avsender beskjed om at meldingen ikke lot seg levere, og hvorfor.
Hvis bare alle var ærlige
I hvert enkelt ledd av denne prosessen er det en underliggende forutsetning at kommunikasjonspartnerne oppgir korrekt informasjon. I mange tilfeller er det slik, og det dreier seg om legitim kommunikasjon mellom parter som har grunn til å ønske kontakt. Dessverre finnes det også tilfeller der denne grunnleggende tilliten blir brutt eller misbrukt, for eksempel når epostmeldinger blir sendt med annen avsenderadresse enn den reelle, gjerne noe oppdiktet i et domene som tilhører andre. En del av oss har også opplevd å få returmeldinger om at levering ikke var mulig på grunnlag av meldinger som vi vitterlig ikke har sendt[1]. Når vi ser nøyere på innholdet i disse meldingene, vil vi i nesten alle tilfeller se at dette er søppelpost, tidvis med innslag av svindel og kanskje ledd i førsøk på å overta mottakerens maskin eller stjele sensitive data.
Hva gjør de ansvarlige?
Hvis du spør en typisk systemadministrator om hvilke tiltak som er satt i verk for å hindre at uønskede eller skadelige meldinger faktisk kommer frem til brukerne, vil du antakelig få høre en beskrivelse som stort sett kan kokes ned til at posten blir filtrert gjennom systemer som studerer innholdet i meldingene. Hvis meldingen ikke inneholder noe som er kjent som uønsket (kjent spam eller skadelig programvare) eller noe som likner på noe som kunne være det, blir meldingen levert til brukeren den er adressert til. Hvis systemet avgjør at meldingen har innhold som gjør at den ikke skal leveres til mottaker, blir meldingen i mange tilfeller kastet uten å bli levert, og noen systemadministratorer vil nok også fortelle deg at systemet sender melding om avgjørelsen tilbake til adressen som er oppgitt som avsender.
Mye av dette hører antakelig til den passive kunnskapen hos mange, og de fleste slår seg til ro med at innholdsfiltrering er det eneste vi kan gjøre for å holde tvilsomme eller direkte kriminelle elementer unna arbeidsmiljøet. For en enkelt sluttbruker er det sannsynligvis bare mindre justeringer ut fra dette som er mulig.
Tiltak basert på observert adferd
Men for oss som håndterer driften av selve tjenesten er det mulig å studere dataene som registreres automatisk i loggene våre og bruke spammernes (her brukt om avsendere av alle typer uønsket epost, inkludert skadevare) adferd til å fjerne mesteparten av den uønskede trafikken før innholdet i meldingene er kjent. Det er nødvendig å gå ned på et noe mer grunnleggende nivå i nettverkstrafikken og studere adferden på nettverksnivå.
En av de enkleste formene av slike adferdsbaserte tiltak dukket opp i form av en teknikk som fikk navnet grålisting (greylisting) i 2003. Teknikken bygger på en litt pedantisk og ganske kreativ tolkning av allerede vedtatte standarder. Protokollen som brukes for epost-overføring på Internett, SMTP (Simple Mail Transfer Protocol) inneholder en mulighet for at en server som har antatt forbigående problemer med å ta imot epost kan rapportere om tilstanden ved å svare med en spesiell feilkode når andre maskiner prøver å levere. Hvis avsendermaskinen er korrekt konfigurert, vil den vente en viss tid før den gjør et nytt forsøk på levering, og etter all sannsynlighet vil den lykkes etter kort tid. Det er verd å merke seg at dette er en del av standarden som først og fremst skulle sørge for at eposttjenesten skulle være så pålitelig som mulig, og i de fleste tilfeller skjer alt dette uten at personen som skrev og sendte meldingen merker noe til det. Meldingene kommer frem, og alle er fornøyde.
Grå og svarte lister, små hvite løgner
Grålisting går ut på at serveren gir melding om midlertidig feil til alle forsøk på epostlevering fra maskiner den ikke har hatt kontakt med før. Erfaringene viste at antakelsene fra før eksperimentet i hovedsak var korrekte: De aller fleste maskiner som sender legitim epost er satt opp til å sjekke returkoder og handle etter dem, mens de aller fleste avsendere av spam bare pøser på så mange meldinger som mulig, uten å sjekke returkoder. Resultatet er at et sted mellom åtti og noenognitti prosent av spam-mengden blir stoppet på første forsøk (før eventuell innholdsfiltrering), mens legitim post kommer frem, i noen tilfeller med en viss forsinkelse ved første kontakt.
En annen adferdsbasert teknikk, som faktisk var i bruk før grålisting ble utbredt, er å bruke såkalte svartlister - lister over maskiner som er blitt klassifisert som spam-avsendere - og avvise post fra maskiner som var med i listen. Noen grupper begynte etterhvert å eksperimentere med såkalte tjærehull (tarpit), der teknikken går ut på å forsinke trafikk fra maskiner som er med i en svartliste ved å la sin del av kommunikasjonen gå svært sakte. Et eksempel som ofte nevnes er programmet spamd, som det frie operativsystemet OpenBSD lanserte i mai 2003. Programmet hadde da som sin hovedoppgave å svare på eposttrafikk fra svartlistede maskiner med ett tegn i sekundet, uten at avsendere som var med i en svartliste hadde noen reell mulighet til å få levert meldingene.
Kombinasjonen av svartlister og grålisting har vist seg å fungere utmerket. Likevel fortsetter praktikere og utviklere forsøkene på å få til enda mer effektive teknikker. Enda en gang kom neste logiske steg som resultat av observert adferd. Vi så tidligere at spammere ikke bryr seg om å sjekke om hver enkelt melding faktisk kommer frem.
Legge ut snarer og agn
Tidlig i 2005 førte dette til at det ble det formulert en teori som det viste seg å være hold i: Hvis vi så lager en eller flere adresser i vårt eget domene som vi vet aldri vil ha noen grunn til å få legitim post, så kan vi med nesten hundre prosent sikkerhet vite at post som blir forsøkt levert til disse adressene er spam. Adressene er spammerfeller. Maskiner som prøver å levere spam til disse adressene, kan vi legge i en lokal svartliste som vi så oppholder med ett tegn i sekundet. Maskinene blir liggende i svartlisten i 24 timer dersom ikke annet tilsier det.
Den nye teknikken fikk navnet greytrapping, og ble lansert som del av en forbedret spamd i OpenBSD 3.8 i mai 2005. Bob Beck, som var sentral deltaker i utviklingen av spamd, annonserte tidlig i 2006 at han brukte greytrapping på sentralt plasserte maskiner ved University of Alberta, og gjorde svartlistene som er resultat av fangsten, med oppdateringer hver time, tilgjengelig for nedlasting slik at andre kan bruke listene i sine oppsett. Dette er åpenbart nyttig, maskiner som sender til adresser som aldri har vært leverbare, har etter all sannsynlighet ikke legitim epost å levere, og vi gjør samfunnet en tjeneste ved å hindre dem i leveringen og å få dem til å kaste bort så mye tid som mulig.
Det er kanskje verd å nevne at svartlisten fra University of Alberta så lenge undertegnede har fulgt den har inneholdt minst noenogtyvetusen IP-adresser, og har i travle perioder vært oppe i nesten tohundretusen maskiner.
Også du kan bidra
Likevel er det ikke nødvendig å være sentralt plassert programvareutvikler for å kunne bidra positivt. De samme verktøyene som Beck bruker til å generere sin svartliste er tilgjengelige for alle som del av OpenBSD, og er ikke så vanskelig å bruke som man kunne frykte.
Her på bsdly.net og beslektede domener observerte vi sommeren 2007 en markert økning i meldinger om ikke leverbar epost til epostadresser som aldri har eksistert i noen av våre domener. Her var det helt klart snakk om at noen, en eller flere grupper, genererte eller fant på avsenderadresser for å unngå å få reaksjoner på spammen sin tilbake til seg. Dette førte i sin tur til et eksperiment som vi fortsatt har gående. Vi registrerer ugyldige adresser i våre egne domener som dukker opp i loggene våre. Av disse adressene velger vi ut de helt usannsynlige, legger dem inn i vår lokale spammerfelle-liste og legger ut listen på en egen side på webserveren vår[2].
Erfaringene viser at det tar svært kort tid før adressene vi fører opp på denne siden dukker opp som mottakeradresser. Kort og godt har vi klart å fore spammere med data som gjør det enklere for oss å stoppe dem, og i mange tilfeller får vi i tillegg spamsenderne til å bruke betydelige mengder tid på å kommunisere med våre maskiner uten å oppnå noe som helst. Antallet spammerfelle-adresser i vår liste er nå oppe i rundt femtentusen, og vi har tidvis observert grupper av maskiner som bruker noen uker på å arbeide seg gjennom hele listen, med gjennomsnittlig noe under syv minutter brukt per mislykkede leveringsforsøk.
Som et biprodukt av denne aktive spammerfangingen begynte vi å eksportere vår egen liste over maskiner som har blitt fanget via spammerfelle-adressene de siste 24 timer og legge den ut tilgjengelig for nedlasting. At denne listen finnes, er kun annonsert via siden med spammerfelle-adressene og noen bloggposter, men vi ser at den blir hentet regelmessig og antakelig automatisk av andre som bruker den i sine systemer.
Så langt har vi etablert at det er mulig å lage et system som gjør at sannsynligheten for at spam kommer gjennom til brukere er svært liten, samtidig som det er nesten helt usannsynlig at legitim post blir merkbart hindret. Dermed har vi det som tilsvarer gode gjerder rundt egen eiendom, men spammerne finnes fortsatt der ute og er et potensielt alvorlig problem for de som ikke har tilstrekkelig beskyttelse mot dem.
Samle bevis, eller i det minste skape klarhet
Aller helst hadde vi ønsket at politi og påtalemyndigheter hadde tatt spammerproblemet alvorlig. Dette ikke bare fordi den spammen som kommer frem er irriterende å se, men fordi nesten all spam sendes via utstyr som spammerne bruker uten eiernes samtykke. Kort og godt ønsker vi at det blir satt inn ressurser som står i forhold til den kriminelle virksomheten spammen representerer. Vi ville gjerne hjelpe til, men i utgangspunktet kan det virke som vi kan ha problem med å skaffe til veie brukbart bevismateriale siden vi ikke mottar meldingene som spammerne forsøker å levere. På den annen side har vi til enhver tid en liste over maskiner som har prøvd å levere spam, noe nær hundre prosent sikkert identifisert på grunnlag av spammerfelle-adressene. I tillegg produserer systemene våre rutinemessig logger over all aktivitet, med det detaljnivået vi selv velger. Dermed går det an å søke i loggene etter IP-adressene som har forsøkt å levere spam til oss siste 24 timer, og få oversikt over hva maskinene har foretatt seg.
Resultatet av et typisk søk av denne typen ser slik ut:
Aug 10 02:34:29 skapet spamd[13548]: 190.20.132.16: connected (4/3)
Aug 10 02:34:41 skapet spamd[13548]: (GREY) 190.20.132.16: <kristie@iland.net> -> <asasaskosmicki@bsdly.net>
Aug 10 02:34:41 skapet spamd[13548]: 190.20.132.16: disconnected after 12 seconds.
Aug 10 03:41:42 skapet spamd[13548]: 190.20.132.16: connected (14/13), lists: spamd-greytrap
Aug 10 03:42:23 skapet spamd[13548]: 190.20.132.16: disconnected after 41 seconds. lists: spamd-greytrap
Aug 10 06:30:35 skapet spamd[13548]: 190.20.132.16: connected (23/22), lists: spamd-greytrap becks
Aug 10 06:31:16 skapet spamd[13548]: 190.20.132.16: disconnected after 41 seconds. lists: spamd-greytrap becks
Den første linjen angir at 190.20.132.16 tar kontakt med vårt system klokken 02.34.29 om morgenen tiende august, som fjerde aktive forbindelse, derav tre svartlistede. Noen sekunder senere blir det klart at dette er et forsøk på å levere en melding til adressen asasaskosmicki@bsdly.net, som er blant de vi har som spammerfelle, sannsynligvis høstet fra logger og diktet opp et annet sted i verden. Etter 12 sekunder kobler denne maskinen fra. Forsøket på å levere til en spammerfelle gjør at maskinen blir oppført i vår lokale svartliste, spamd-greytrap, noe som vises klart når maskinen prøver igjen litt mer enn en time senere. På dette forsøket blir den oppholdt i 41 sekunder. Det tredje forsøket i vårt loggmateriale skjer like etter 06.30, og at listenavnet becks har kommet til, viser at maskinen i mellomtiden har forsøkt å levere til en av Bob Becks spammerfelle-adresser og nå er med i også den svartlisten.
Det er dessverre lite sannsynlig at slike logger er tilstrekkelige som bevismateriale i straffesaker, men for de som har interesse av enten å sørge for at maskinene de administrerer i så liten grad som mulig brukes til spamutsendelse eller de som har interesse av spammeradferd er dette nyttige data.
“Name And Shame”, eller kanskje bare godt naboskap?
Etter noen diskusjoner med kolleger bestemte jeg meg tidlig i august 2008 for å generere daglige oversikter over aktivitetene til maskiner som har kommet inn i vår lokale svartliste på bsdly.net og legge dem ut offentlig. Når en maskin er oppført i en svartliste med bare IP-adresse (for eksempel 24.165.4.190), uten annet materiale om oppføringen, er oppføringen mest en påstand som de ansvarlige godt kan velge å ikke tro på. Vårt håp er at om den som er ansvarlig for nettverket der 24.165.4.190 hører hjemme ser en sekvens som denne,
Host 24.165.4.190:
Aug 10 02:57:40 skapet spamd[13548]: 24.165.4.190: connected (9/8)
Aug 10 02:57:54 skapet spamd[13548]: (GREY) 24.165.4.190: <hand@itnmiami.com> -> <kimberlee.ledet@ehtrib.org>
Aug 10 02:57:55 skapet spamd[13548]: (GREY) 24.165.4.190: <hand@itnmiami.com> -> <kimberliereffett@ehtrib.org>
Aug 10 02:57:56 skapet spamd[13548]: 24.165.4.190: disconnected after 16 seconds.
Aug 10 02:58:16 skapet spamd[13548]: 24.165.4.190: connected (8/6)
Aug 10 02:58:30 skapet spamd[13548]: (GREY) 24.165.4.190: <brunson@jebconet.com> -> <kimberlee.ledet@ehtrib.org>
Aug 10 02:58:31 skapet spamd[13548]: (GREY) 24.165.4.190: <brunson@jebconet.com> -> <kimberliereffett@ehtrib.org>
Aug 10 02:58:32 skapet spamd[13548]: 24.165.4.190: disconnected after 16 seconds.
Aug 10 02:58:39 skapet spamd[13548]: 24.165.4.190: connected (7/6), lists: spamd-greytrap
Aug 10 03:02:24 skapet spamd[13548]: (BLACK) 24.165.4.190: <aarnq@abtinc.com> -> <kimberlee.ledet@ehtrib.org>
Aug 10 03:03:17 skapet spamd[13548]: (BLACK) 24.165.4.190: <aarnq@abtinc.com> -> <kimberliereffett@ehtrib.org>
Aug 10 03:05:01 skapet spamd[13548]: 24.165.4.190: From: "Preston Amos" <aarnq@abtinc.com>
Aug 10 03:05:01 skapet spamd[13548]: 24.165.4.190: To: kimberlee.ledet@ehtrib.org
Aug 10 03:05:01 skapet spamd[13548]: 24.165.4.190: Subject: Wonderful enhancing effect on your manhood.
Aug 10 03:06:04 skapet spamd[13548]: 24.165.4.190: disconnected after 445 seconds. lists: spamd-greytrap
så er det tilstrekkelig grunnlag for å gjøre noe aktivt. Materialet er tilgjengelig via The Name And Shame Robot-siden på http://www.bsdly.net/~peter/nameandshame.html. Siste genererte loggoversikt er tilgjengelig via referanser på den siden, tidligere utgaver blir arkivert, men vil være tilgjengelige ved godt begrunnet forespørsel.
The Name and Shame Robot er såpass ny at vi ikke kan si spesielt mye om effekten av offentliggjøringen. Det er lov å håpe på at andre vil gjøre noe tilsvarende ut fra sine lokale loggdata eller kanskje til og med synkronisere sine data med våre. Ta gjerne kontakt hvis du er interessert i dette arbeidet.
Uavhengig av alt annet håper vi at dataene kan være nyttige, både som påpeking av forbedringspotensiale for de nettverkene som opptrer jevnlig i oversiktene og som materiale for studier som kan gi oss enda bedre spambekjempelse.
Noter
[1] En samling av slike returmeldinger fra tidligere i år kan beskues på http://www.bsdly.net/~peter/joejob-archive.2008-07-28.txt
[2] http://www.bsdly.net/~peter/traplist.shtml, referanser på den siden fører videre til bloggen min som jeg bruker til offentlige notater, og annet relevant materiale.
En forkortet utgave av denne artikkelen ble trykt i Computerworld Norge 22. august 2008.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Comments are moderated. On-topic messages will be liberated from the holding queue at semi-random (hopefully short) intervals.
I invite comment on all aspects of the material I publish and I read all submitted comments. I occasionally respond in comments, but please do not assume that your comment will compel me to produce a public or immediate response.
Please note that comments consisting of only a single word or only a URL with no indication why that link is useful in the context will be immediately recycled so those poor electrons get another shot at a meaningful existence.
If your suggestions are useful enough to make me write on a specific topic, I will do my best to give credit where credit is due.